Apoptotic forces in tissue morphogenesis
نویسندگان
چکیده
منابع مشابه
Apoptotic forces in tissue morphogenesis
It is now well established that apoptosis is induced in response to mechanical strain. Indeed, increasing compressive forces induces apoptosis in confined spheroids of tumour cells, whereas releasing stress reduces apoptosis in spheroids cultivated in free suspension (Cheng et al., 2009). Apoptosis can also be induced by applying a 100 to 250MPa pressure, as shown in different cultured cells (f...
متن کاملForces in Tissue Morphogenesis and Patterning
During development, mechanical forces cause changes in size, shape, number, position, and gene expression of cells. They are therefore integral to any morphogenetic processes. Force generation by actin-myosin networks and force transmission through adhesive complexes are two self-organizing phenomena driving tissue morphogenesis. Coordination and integration of forces by long-range force transm...
متن کاملPulling together: Tissue-generated forces that drive lumen morphogenesis.
Mechanical interactions are essential for bending and shaping tissues during morphogenesis. A common feature of nearly all internal organs is the formation of a tubular network consisting of an epithelium that surrounds a central lumen. Lumen formation during organogenesis requires precisely coordinated mechanical and biochemical interactions. Whereas many genetic regulators of lumen formation ...
متن کاملForces generated by cell intercalation tow epidermal sheets in mammalian tissue morphogenesis.
While gastrulation movements offer mechanistic paradigms for how collective cellular movements shape developing embryos, far less is known about coordinated cellular movements that occur later in development. Studying eyelid closure, we explore a case where an epithelium locally reshapes, expands, and moves over another epithelium. Live imaging, gene targeting, and cell-cycle inhibitors reveal ...
متن کاملDeveloping pressures: fluid forces driving morphogenesis
Over several decades genetic studies have unraveled many molecular mechanisms that underlie the signaling networks guiding morphogenesis, but the mechanical forces at work remain much less well understood. Accumulation of fluid within a luminal space can generate outward hydrostatic pressure capable of shaping morphogenesis at several scales, ranging from individual organs to the entire vertebr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mechanisms of Development
سال: 2017
ISSN: 0925-4773
DOI: 10.1016/j.mod.2017.04.230